Adaptive Non-Inferiority Margins: When Adherence is Not as Expected

Brett Hanscom, PhD
HPTN SDMC
Seattle, WA
4/11/2017
Introduction

• Non-inferiority design
 – Determine whether an experimental product is not meaningfully worse than an active-control therapy.

• Example: HPTN 083
 – Randomized trial of injectable Cabotegravir as long-acting PrEP
 – Active-control group: Oral TDF/FTC
Non-Inferiority Margin

• The non-inferiority margin is the numerical threshold beyond which a new product would be considered unacceptably worse.
• This is typically derived from the results of prior clinical trials, using meta analysis.
• Strong predictors of effectiveness, such as adherence, can make the margin more precise.
META-REGRESSION RESULTS

Relative Risk (RR) - Placebo vs. Active PrEP

Women
Men

Adherence

Adherence
META-REGRESSION RESULTS
META-REGRESSION RESULTS
PLANNED NON-INFERIORITY MARGIN – 60% ADHERENCE

Relative Risk relative to the Active Control (log scale)

- Experimental vs. Active-Control (Planned Trial)
- Planned Margin
- Active-Control Benefit (Prior Trials)

Relative Risk: 1.0, 1.23, 1.50
What happens if adherence is not as planned?

Effectiveness of TDF/FTC will not be as planned either, and the selected NI margin will be invalid.

We have a violation of the constancy assumption.

Type-I error and power may suffer.
OBSERVE 55% ADHERENCE – MARGIN IS TOO HIGH – INFLATED TYPE-I ERROR

Experimental vs. Active-Control (Planned Trial)

Correct Margin

Estimated Active-Control Benefit

Relative Risk relative to the Active Control (log scale)
OBSERVE 70% ADHERENCE – MARGIN IS TOO HIGH – LOW POWER

Experimental vs. Active-Control (Planned Trial)

Relative Risk relative to the Active Control (log scale)

Correct Margin

Observed Active-Control Benefit

1.0

1.37

1.89
Type-I error and power, wrong margin

<table>
<thead>
<tr>
<th>Observed Adherence</th>
<th>Estimated TDF/FTC Benefit</th>
<th>NI Margin Preserving 50% Benefit</th>
<th>Type-I Error</th>
<th>Power**</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>1.17</td>
<td>1.08</td>
<td>0.13</td>
<td>0.98</td>
</tr>
<tr>
<td>0.55</td>
<td>1.33</td>
<td>1.15</td>
<td>0.06</td>
<td>0.95</td>
</tr>
<tr>
<td>0.60*</td>
<td>1.5</td>
<td>1.23</td>
<td>0.025</td>
<td>0.90</td>
</tr>
<tr>
<td>0.65</td>
<td>1.69</td>
<td>1.30</td>
<td>0.01</td>
<td>0.82</td>
</tr>
<tr>
<td>0.70</td>
<td>1.89</td>
<td>1.37</td>
<td>0.004</td>
<td>0.71</td>
</tr>
</tbody>
</table>

* Planned level of adherence
** Assuming RR = 0.75
Proposal – Adaptive Margins

• Measure drug adherence in the active-control arm during/after the trial
• Re-compute the NI Margin based on the observed population values
• Apply this adapted margin to the final endpoint results
Adapted Null Hypothesis

- The adapted margin becomes the adapted null hypothesis
- In a superiority
 - $H_0: \text{RR} = 1.0$
- In a NI trial
 - $H_0: \text{RR} = \text{NI Margin}$
- In an adaptive margin NI trial
 - $H_0: \text{RR} = \text{“Preserve 50% of Benefit”}$
Corrected Type-I Error

<table>
<thead>
<tr>
<th>Observed Adherence</th>
<th>Estimated TDF/FTC Benefit</th>
<th>Adapted NI Margin</th>
<th>Type-I Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>1.17</td>
<td>1.08</td>
<td>0.025</td>
</tr>
<tr>
<td>0.55</td>
<td>1.33</td>
<td>1.15</td>
<td>0.025</td>
</tr>
<tr>
<td>0.60*</td>
<td>1.50</td>
<td>1.23</td>
<td>0.025</td>
</tr>
<tr>
<td>0.65</td>
<td>1.69</td>
<td>1.30</td>
<td>0.025</td>
</tr>
<tr>
<td>0.70</td>
<td>1.89</td>
<td>1.37</td>
<td>0.025</td>
</tr>
</tbody>
</table>

* Planned level of adherence
ALTERNATIVE HYPOTHESIS UNDER A FIXED SAMPLE SIZE (N=172)

Relative Risk relative to the Active Control (log scale)

Planned Alt

Effect Size

Planned Margin

0.75 1.0 1.23
ALTERNATIVE HYPOTHESIS UNDER A FIXED SAMPLE SIZE (N=172)

Relative Risk relative to the Active Control (log scale)
New Alternative Hypothesis

<table>
<thead>
<tr>
<th>Observed Adherence</th>
<th>Estimated TDF/FTC Benefit</th>
<th>Adapted NI Margin</th>
<th>Type-I Error</th>
<th>Alternative with 90% Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>1.17</td>
<td>1.08</td>
<td>0.025</td>
<td>0.66</td>
</tr>
<tr>
<td>0.55</td>
<td>1.33</td>
<td>1.15</td>
<td>0.025</td>
<td>0.70</td>
</tr>
<tr>
<td>0.60*</td>
<td>1.50</td>
<td>1.23</td>
<td>0.025</td>
<td>0.75</td>
</tr>
<tr>
<td>0.65</td>
<td>1.69</td>
<td>1.30</td>
<td>0.025</td>
<td>0.79</td>
</tr>
<tr>
<td>0.70</td>
<td>1.89</td>
<td>1.37</td>
<td>0.025</td>
<td>0.83</td>
</tr>
</tbody>
</table>

* Planned level
Pre-specification

• The meta-regression model used for adapting the margin is based entirely on external trials.
• The adapted NI margin depends only on adherence observed in the active control arm, and not on the observed effect size.
• Procedures for measuring adherence, should be carefully pre-specified.
Cautions

- The meta-regression model is not perfect.
- Assessment of adherence is not perfect, and may not be identical to the way adherence was measured previously.
- These methods are in development and not yet approved by the FDA for HPTN 083.
Summary

• It will be increasingly common to see non-inferiority trials for HIV prevention
• Essential to consider adherence levels in the study population when planning and analyzing these trials
• Adaptive NI margins can be a helpful tool when adherence is not as planned and the constancy assumption fails
ACKNOWLEDGEMENTS

The HIV Prevention Trials Network is sponsored by the National Institute of Allergy and Infectious Diseases, the National Institute of Mental Health, and the National Institute on Drug Abuse, all components of the U.S. National Institutes of Health.

Collaborators:
Deborah Donnell, Jim Hughes
HPTN SDMC / SCHARP
Brian Williamson
University of Washington