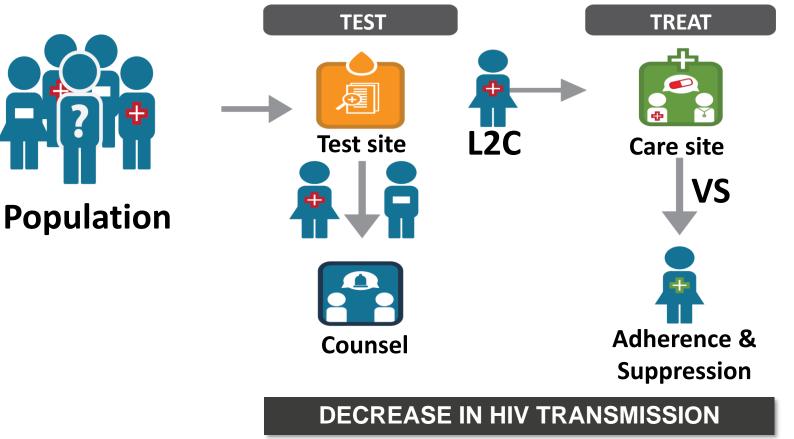


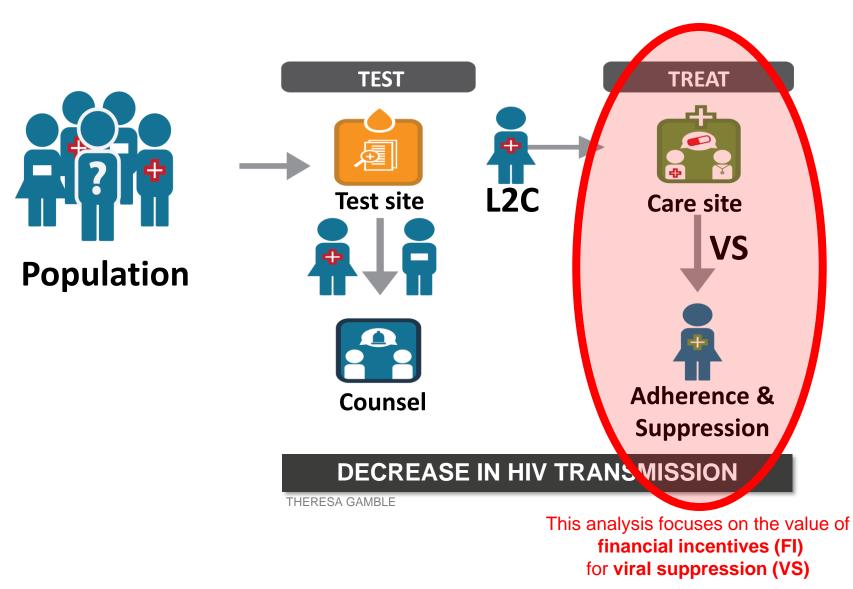
Cost-Effectiveness of Financial Incentives for Viral Suppression An Economic Model of HPTN 065

Blythe Adamson, MPH, PhD Candidate University of Washington Seattle, WA, USA April 11, 2017



Background

HPTN 065 aimed to assess the feasibility of the "test and treat" model to decrease HIV transmission at the community level.


To realize the benefits of anti-retroviral therapy (ART), financial incentives promoted linkage to care and viral suppression.

TEST & TREAT FRAMEWORK

THERESA GAMBLE

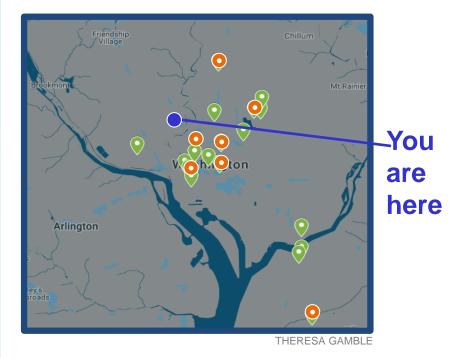
TEST & TREAT FRAMEWORK

39 Clinics

The Bronx, New York

Washington, D.C.

THERESA GAMBLE


39 Clinics Randomized

To deliver standard HIV care OR care plus incentive for VS

The Bronx, New York

Washington, D.C.

Intervention

F	First Citizens Bank	\$70 GIFT CARD
0000	0000 0000 00	00
GIFT CA	RD 2000 00/00	DEBIT VISA

• **\$70** VISA gift cards

- Offered quarterly to patients on ART with viral suppression (VS <400 copies/ml)
- Duration: 2011-2013
- Supported startup costs, Financial Incentives Coordinator, and supplies at each site

Objective

To evaluate the **cost-effectiveness** of providing financial incentives for viral suppression compared to standard HIV care for patients using ART to inform public health decisions in the United States.

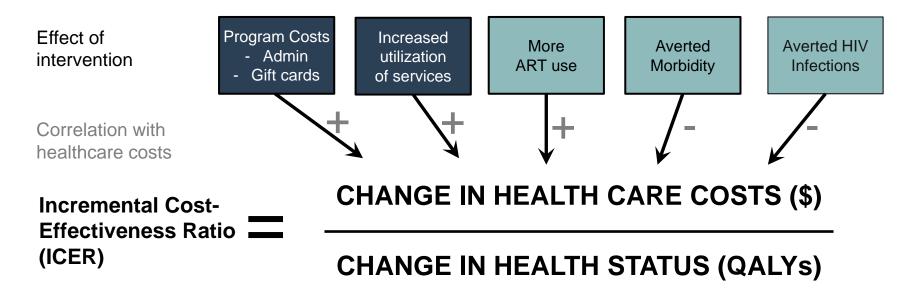
assess Value

Conceptual Model of Cost-Effectiveness

Incremental Cost-Effectiveness Ratio

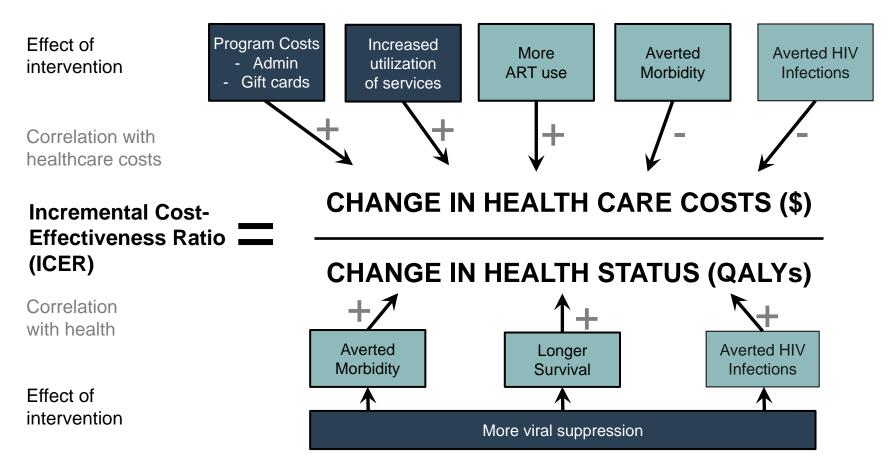
CHANGE IN HEALTH CARE COSTS (\$)

CHANGE IN HEALTH STATUS (QALYs)


Based on "Cost-Effectiveness of Antiretroviral Therapy for Prevention" by Kahn et al., 2011

Conceptual Model of Cost-Effectiveness

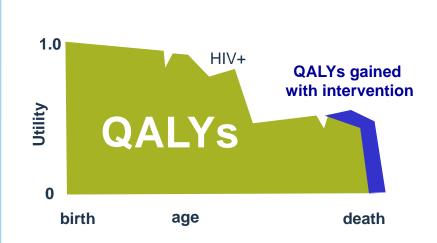
HPTN 065 / modeling Published data / modeling



Conceptual Model of Cost-Effectiveness

HPTN 065 / modeling Published data / modeling

Based on "Cost-Effectiveness of Antiretroviral Therapy for Prevention" by Kahn et al., 2011


Measuring Health Benefits

Quality-Adjusted Life Years (QALYs)

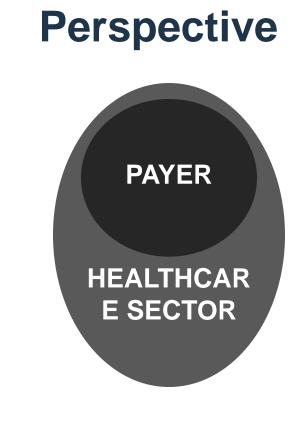
Health-related quality of life:
→ utility of health state between
1 (perfect health) and 0 (death)

QALYs = sum(life year * utility)

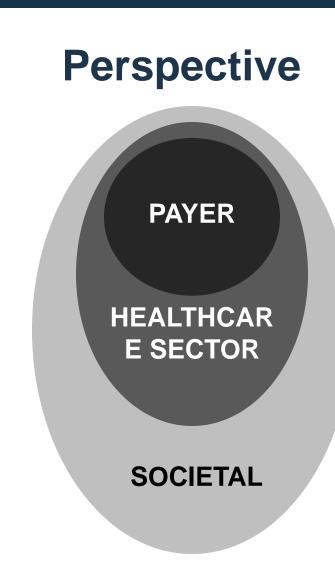
To capture the length and quality of life for patients and partners

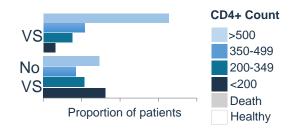
Costs included:

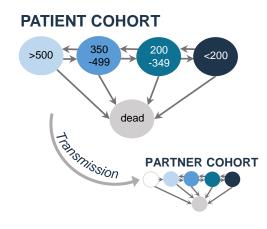
- FI admin & gift cards
- Patient HIV-related healthcare costs
 - ART drugs
 - Clinic visits
 - Labs


Perspective

Costs included:


- FI admin & gift cards
- Patient HIV-related healthcare costs
 - ART drugs
 - Clinic visits
 - Labs
- Other HIV-unrelated healthcare
- Partner health care costs


Costs included:


- FI admin & gift cards
- Patient HIV-related healthcare costs
 - ART drugs
 - Clinic visits
 - Labs
- Other HIV-unrelated healthcare
- Partner health care costs
- Productivity: earnings
- Consumption: spending

Modeling Approach

- Cohort-based semi-Markov model of HIV disease progression and primary transmission to sexual partners
 - Assumes financial incentive effect diminishes to zero over 6 months after FI end
- Cost-effectiveness
 analysis:
 - Patient lifetime horizon
 - 3% annual discount rate

Program characteristics
and key model inputsMedian (Range)SourceAverage clinic size, number of patients in care456 (43 – 2,262)HPTN 065Baseline proportion of patients virally suppressed61.9% (8.4 - 84.6%)HPTN 065

Program characteristics and key model inputs

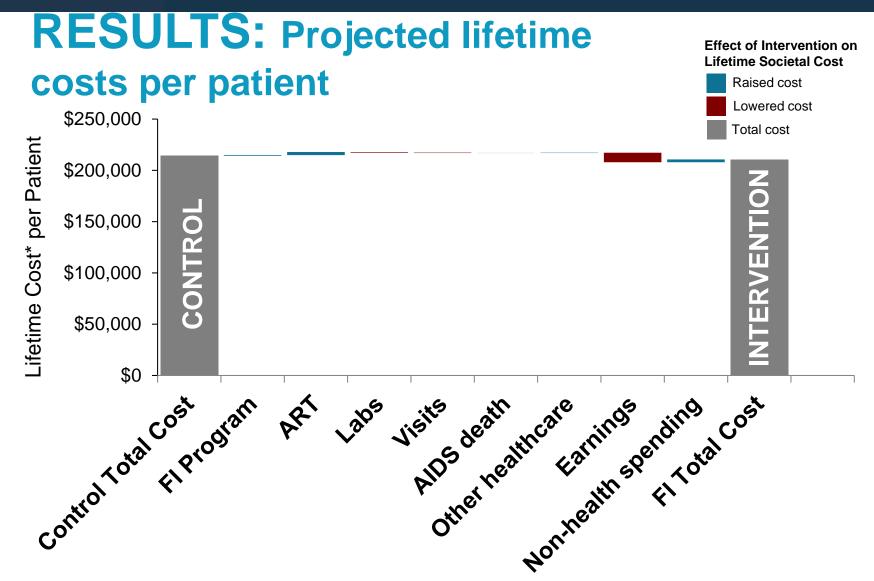
Median (Range) Source

Average clinic size, number of patients in care	456 (43 – 2,262)	HPTN 065
Baseline proportion of patients virally suppressed	61.9% (8.4 - 84.6%)	HPTN 065
Effectiveness: change in viral suppression Average percentage points increase from baseline clinic proportion	3.7% (0.5 – 6.9%)	HPTN 065
Increase in clinic attendance, %	8.7% (4.2 - 13.2%)	HPTN 065

Program characteristics and key model inputs

Median (Range) Source

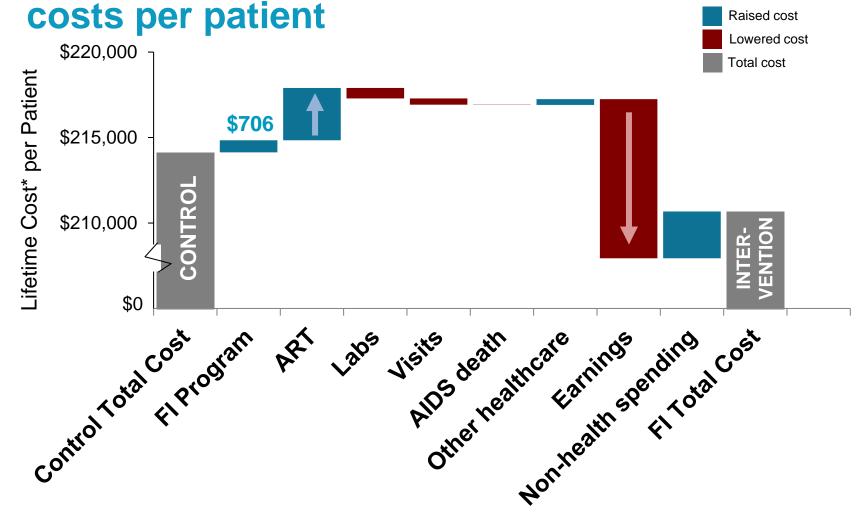
	0.69 - 0.73 (0.58 - 0.83)	Whitham 2016
HIV Utility, by CD4 strata		
Increase in clinic attendance, %	8.7% (4.2 - 13.2%)	HPTN 065
Effectiveness: change in viral suppression Average percentage points increase from baseline clinic proportion	3.7% (0.5 – 6.9%)	HPTN 065
Baseline proportion of patients virally suppressed	61.9% (8.4 - 84.6%)	HPTN 065
Average clinic size, number of patients in care	456 (43 – 2,262)	HPTN 065



RESULTS: Health Outcomes Modeled

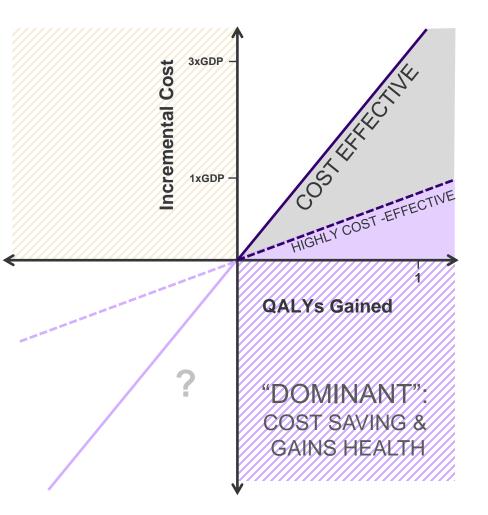
Compared to standard care, for the FI program cohort the model projects:

- Participants on average survive 1 month longer
- Gain of 0.05 QALYs per patient
- 1 HIV infection avoided per 200 FI participants (9% reduction in primary HIV transmission)



*Limited societal perspective costs using lifetime horizon, discounted 3% annually, and adjusted to 2015 US\$

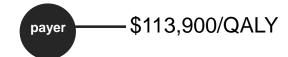
RESULTS: Projected lifetime

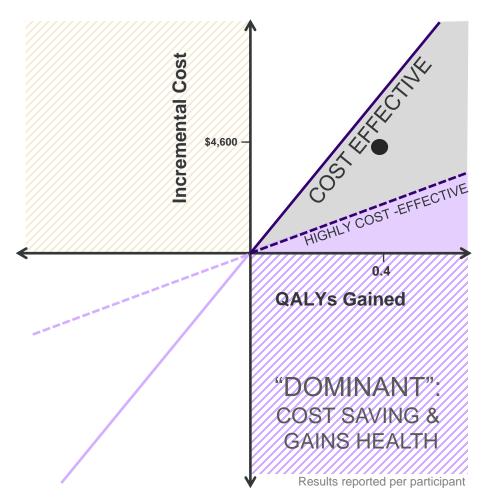

Effect of Intervention on Lifetime Societal Cost

*Limited societal perspective costs using lifetime horizon, discounted 3% annually, and adjusted to 2015 US\$

Willingness to Pay

Cost-effectiveness threshold of \$50,000 - \$150,000 per QALY gained (1-3 x GDP per capita)

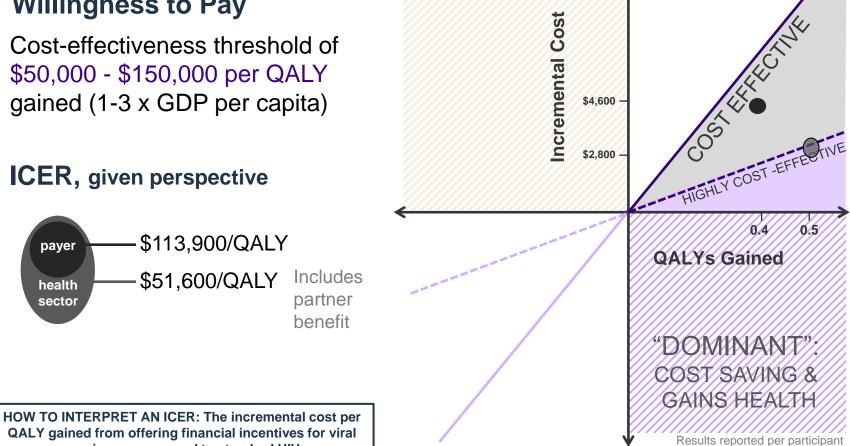




Willingness to Pay

Cost-effectiveness threshold of \$50,000 - \$150,000 per QALY gained (1-3 x GDP per capita)

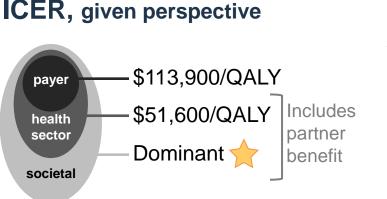
ICER, given perspective



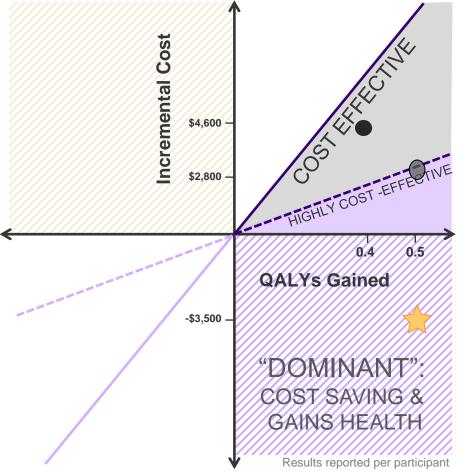
HOW TO INTERPRET AN ICER: The incremental cost per QALY gained from offering financial incentives for viral suppression as compared to standard HIV care

Willingness to Pay

Cost-effectiveness threshold of \$50,000 - \$150,000 per QALY gained (1-3 x GDP per capita)


\$4,600

QALY gained from offering financial incentives for viral suppression as compared to standard HIV care



Willingness to Pay

Cost-effectiveness threshold of \$50,000 - \$150,000 per QALY gained (1-3 x GDP per capita)

HOW TO INTERPRET AN ICER: The incremental cost per QALY gained from offering financial incentives for viral suppression as compared to standard HIV care

Comparative Health Interventions in US	ICER (Cost/QALY)	Source
Financial Incentives for Viral Suppression	Lower cost & Health gains	Analyzed Here
HPV Vaccine	\$4,000 - \$14,000*	Chesson 2008
Statins for Coronary Heart Disease	\$22,000	Franco 2005
PrEP in US high risk	\$120,000 - \$600,000*	Gomez 2013, Paltiel 2009, Juusola 2012, Desai 2008, and Koppenhaver 2011

- League tables
 compare the value
 of different
 interventions
- Lower ICERs correspond to greater value
- Cost-effectiveness depends on willingness to pay for health gains

*2005 US\$, **2012 US\$,

Sensitivity Analysis

Parameter Range

Low High

Cost-Effective

ICER, Cost per QALY gained

Effectiveness improving VS

Hazard non-AIDS death <500 CD5

Utilization increase among FI

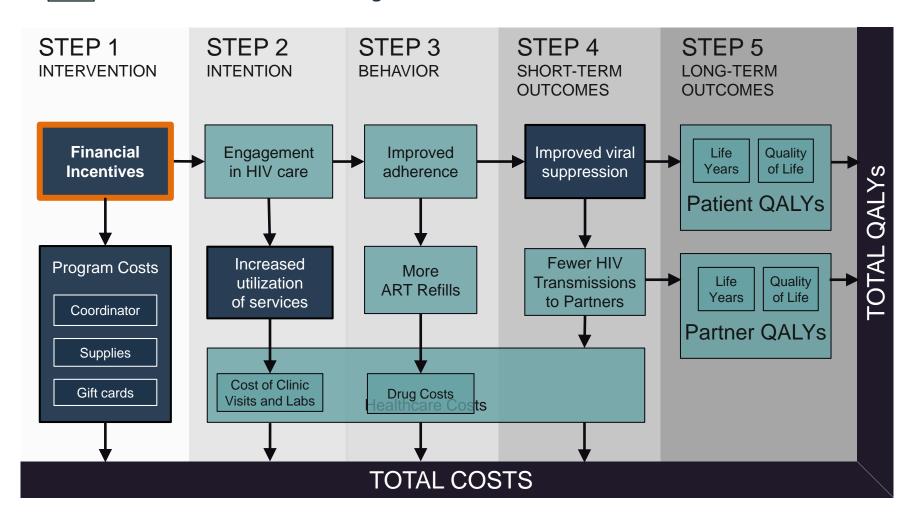
Avg. rate of disease progression

Summary

- Financial incentives as used in HPTN 065 are likely to be cost-effective compared to standard HIV care in the US
- Limited by uncertainty in effectiveness
- Implications for global health
- NYC Housing Works Undetectables now provide financial incentives for viral suppression

ACKNOWLEDGEMENTS

The HIV Prevention Trials Network is sponsored by the National Institute of Allergy and Infectious Diseases, the National Institute of Mental Health, and the National Institute on Drug Abuse, all components of the U.S. National Institutes of Health.


The HPTN 065 Study team acknowledges Dobromir Dimitrov, Fred Hutchinson Cancer Research Center The HPTN Modeling Center Louis Garrison, University of Washington Josh Carlson, University of Washington Ruanne Barnabas, University of Washington

Supplementary Material

CONCEPTUAL FRAMEWORK FOR COSTS & BENEFITS

HPTN 065 / modeling Published literature / modeling

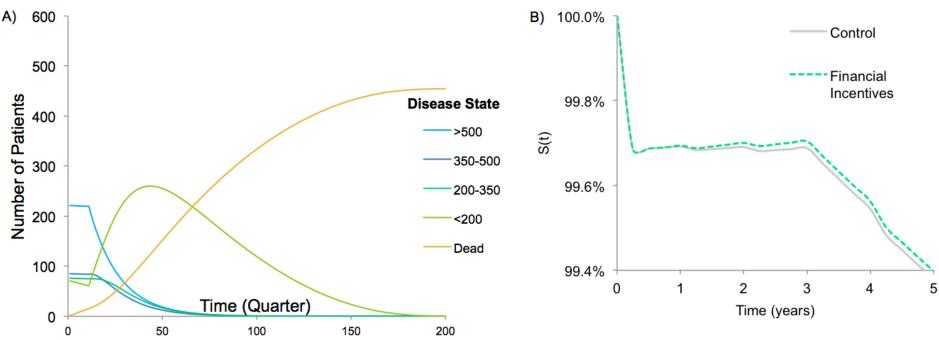
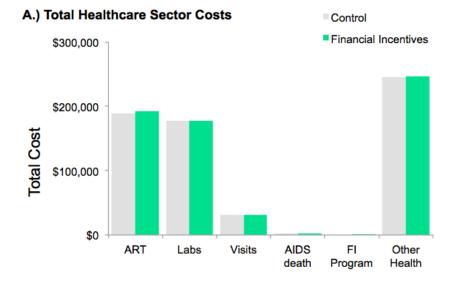
Results from other perspectives

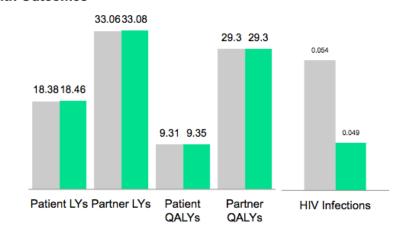
Table 1. Total costs, QALYs, and cost-effectiveness given perspective (societal or healthcare), time horizon (3 years or lifetime), and population (patients)

SOCIETAL PERSPECTIVE	Cost Std	Cost Int	QALYs Std	QALYs Int	Inc Costs	Inc QALYs	ICER
Patients and Partners							
Lifetime	\$214,135	\$210,677	38.569	38.623	\$3,458	0.05365	-\$ 64,453
3 year horizon	\$20,272	\$21,577	6.360	6.362	\$1,305	0.00176	\$ 739,994
Patients Only							
Lifetime	\$667,506	\$666,908	9.312	9.350	\$598	0.03828	-\$ 15,617
3 year horizon	\$63,585	\$64,948	2.035	2.036	\$1,363	0.00139	\$ 978,766
HEALTHCARE SECTOR	Cost Std	Cost Int	QALYs Std	QALYs Int	Inc Costs	Inc QALYs	ICER
Patients and Partners							
Lifetime	\$469,512	\$649,769	38.569	38.623	\$180,256	0.05365	\$3,359,723
3 year horizon	\$83,287	\$106,450	6.360	6.362	\$23,163	0.00176	\$13,130,090
Patients Only							
Lifetime	\$425,246	\$429,874	9.312	9.350	\$4,629	0.03828	\$120,933
3 year horizon	\$75,516	\$79,171	2.035	2.036	\$3,655	0.00139	\$2,625,126
Oleandardine disease actions							

Standardized per patient

Disease Progression and Predicted Survival


Figure 1. Disease Progession and Survival. A) Number of patients in each health state over time in control group (solid line) and financial incentives group (dashed line) over a lifetime horizon; B) quarterly probability of survival in the control group (grey) and financial incentives group (green).

Modeling Outcomes

B.) Health Outcomes

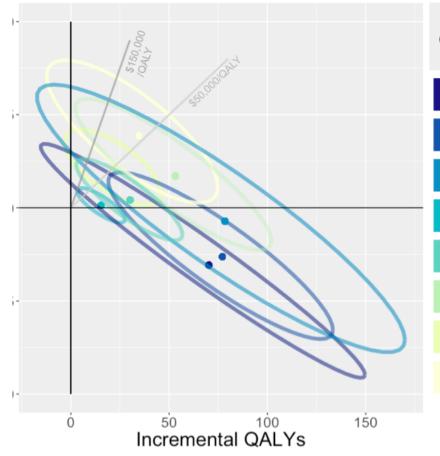


Figure 2. Disaggregated A) total healthcare sector costs and B) health outcomes for patients and parterns, standardized per patient for control (grey) and financial incentives group (green)

Probabilistic Sensitivity Analysis

Cost-Effectiveness

Clinic Sub-Group		Effectiveness, % pts (SE)	Me ICE \$/Q/
	Low Baseline VS	11.5 (6.7)	-\$21,
	Washington, DC	6.6 (2.3)	- \$17
	Hospital	4.8 (3.3)	-\$4,{
	Small Size	4.9 (1.8)	\$4,3
	Community	3.7 (1.8)	\$6,9
	High Baseline VS	2.8 (1.8)	\$16,0
	New York	1.6 (1.5)	\$47,
	Large Size	0.6 (1.8)	\$55,;