Pharmacokinetic interaction assessment of the HIV broadly neutralizing monoclonal antibody VRC07-523LS: a cross-protocol analysis of three phase 1 HIV prevention trials HVTN127/HPTN087, HVTN130/HPTN089 and HVTN136/HPTN092.

Tariro D Chawana

University of Zimbabwe Clinical Trials Research Centre, Zimbabwe HIVR4P 2024

University of Zimbabwe - Clinical Trials Research Centre Saving Lives Through Innovative Research Strategies

Faculty of Medicine and Health Sciences

Conflict of Interest

• None

Summary

What is the main issue or key question(s) your work addresses?

• The monoclonal antibody (mAb) VRC07-523LS is safe and has potent neutralization activity against HIV. We assessed whether there are differences in pharmacokinetics (blood levels over time and distribution in the body) when given in combination with other mAbs.

What was the key finding or "take home message"?

• The pharmacokinetics of VRC07-523LS are largely unaltered in combination administration compared to alone.

How is this important for HIV vaccine research?

 VRC07-523LS has favorable PK and is a good candidate for combination bnAb regimens.

Background

Prior trials showed that VRC07-523LS alone or in combination with other bnAbs was:

- safe
- well-tolerated and
- has better PK and neutralization profile than VRCO1

Potential differences in PK of VRC07-523LS when given in combination vs. alone have not been formally assessed

Aim

- We performed a cross-protocol analysis integrating serum concentration data from 3 trials to compare the PK of VRC07-523LS when administered in combination with other mAbs vs. alone.
- We hypothesized that the overall PK profile of VRC07-523LS would be similar when administered in combination or alone.

Methods

- Retrospective cross-protocol analysis of the HVTN 127/HPTN 087, HVTN 130/HPTN 089 and HVTN 136/HPTN 092 studies
- Intravenous and subcutaneous administration included
- Serum concentrations of VRC07-523LS were described by an open two-compartment population PK model
- Participants divided into 2 groups based on combination or single VRC07-523LS administration
- Antibodies were administered sequentially
- PK parameters were compared using the targeted maximum likelihood estimation (TMLE) method to adjust for potential differences in baseline covariates between groups

Month 0, 4, 8, 12, and 16

Month 0 (double) Month 0 and 4 (triple) Month 0, 4, and 8

Characteristic	Combination N = 46 [(n (%); median (range)]	Single N = 100 [(n (%); median (range)]	
Sex			
Female	24 (52%)	61 (61%)	
Male	22 (48%)	39 (39%)	
Weight (kg)	71 (46, 109)	76 (48, 114)	
Creatinine Clearance (mL/min)	120 (73, 183)	122 (66, 220)	
Age (years)	28 (19, 50)	28 (18, 50)	
Country of study			
United States	46 (100%)	92 (92%)	
Switzerland	0 (0%)	8 (8%)	

SPA O IV Single SPA \triangle SC Single SPA O IV Combination SPA \triangle SC Combination SPA

VRC07-523LS PK parameters similar with combo and alone

- Single - Combination

Similar concentration over time from combination and single administration VRC07-523LS

Predicted concentra tions at:	Single: Mean (95% Cl) (N=100)	Combinat ion: (95% CI) (N=46)	Combinat ion/Singl e: Ratio (95% Cl)	Two-sided raw p- value	Two-sided adjusted p-value
1 day post 1.4g IV infusion (mcg/ml)	332.68 (299.8, 369.17)	271.34 (244.02, 301.71)	0.82 (0.75, 0.88)	<0.001	<0.001
4-Week post 1.4g IV infusion (mcg/ml)	103.99 (98.15, 110.18)	94.28 (89.34, 99.49)	0.91 (0.86, 0.96)	<0.001	0.00
8-Week post 1.4g IV infusion (mcg/ml)	66.73 (62.81, 70.89)	61.75 (58.02, 65.71)	0.93 (0.87, 0.99)	0.02	0.09
16-Week post 1.4g IV infusion (mcg/ml)	29.06 (26.96, 31.33)	28.86 (26.78, 31.11	0.99 (0.91, 1.08)	0.88	1.00

Vc and Vp were higher in combination administration via the TMLE method

PK Features	Description	Single: Mean (95% Cl) (N=100)	Combination: (95% CI) (N=46)	Combination/Si ngle: Ratio (95% CI)	Two-sided raw p-value	Two-sided adjusted p- value
CL (L/day)	Clearance from the central compartment	0.12(0.11. 0.13)	0.13 (0.12, 0.13)	1.06 (1.00, 1.13)	0.06	0.17
Vc (L)	Volume of the central compartment	3.74 (3.26, 4.29)	4.66 (4.07, 5.34)	1.25 (1.14, 1.37)	<0.001	<0.001
Q (L/day)	Inter- compartmental distribution clearance	0.30 (0.22, 0.41)	0.30 (0.22, 0.41)	1.00 (0.91, 1.11)	0.97	0.97
Vp (L)	Volume of the peripheral compartment	3.51 (3.07, 4.01)	3.89 (3.45, 4.38)	1.11 (1.04, 1.18)	<0.001	0.01

Elimination half-life was higher in combination admin via the TMLE method

PK Features	Description	Single: Mean (95% Cl) (N=100)	Combination: (95% CI) (N=46)	Combination/Sin gle: Ratio (95% CI)	Two-sided raw p- value	Two-sided adjusted p-value
Distribution half- life (day)	Length of time for serum concentration of the mAb to decrease by half in the distribution phase	3.71(2.75, 5.01)	4.23 (3.15, 5.69)	1.11(1.05, 1.17)	0.01	0.06
Elimination half- life (day)	Length of time for serum concentration of the mAb to decrease by half in the elimination phase	47.67 (45.46, 49.98)	52.84 (50.17, 55.66)	1.11(1.05, 1.17)	<0.001	0.00
Dose normalized steady-state AUC (day/L)	Dose-normalized area under the curve assuming a single IV administration	8.42 (7.96, 8.9)	7.94 (7.52, 8.39)	0.94 (0.89, 1)	0.06	0.17

Discussion

- Most PK parameters did not differ significantly between combination and single groups
- Mean elimination half-life was slightly longer for combination vs. single administration
- Mean covariate-adjusted central volume of distribution (Vc) and peripheral volume of distribution (Vp) were slightly larger for combination vs. single administration, respectively
- Overall exposure/concentration over time was comparable between group

These results support the design of combination bnAb trials

Acknowledgements

Study participants My mentors and working team:

- Yunda Huang
- Stephen Walsh
- Alison Roxby
- Lynda Stranix-Chibanda
- Ollivier Hyrien
- Chenchen Yu
- Lily Zhang

HVTN SLDA team- Francisco Rentas

HVTN 127/HPTN 087 Protocol Team Acknowledgements

Chairs

- Cynthia Gay
- Stephen Walsh

PTL/CMM

• Shelly Karuna

Statisticians

- Ollivier Hyrien
- Timothy Skalland

Medical Officers

- Jane Baumblatt
- Wairimu Chege

Laboratory Leads

- David Montefiori
- Estelle Piwowar-Manning

CAB Members

- Gary Daffin
- Jamel Young

CERs

- Jorge Benitez
- Noshima Darden-Tabb

CEU Representative

• Gail Broder

Clinic Coordinators

- Elvin Fontana-Martinez
- Rotrease Regan

Community Program Assoc.

Jontraye Davis

CSS

- Maija Anderson
- Sophie Hasan

CTM/CRM

- Carissa Karg
- Phil Andrew

Data Management

- April Randhawa
- Gina Escamilla
- Ingrid Durrenberger

Developer Representatives

- Barney Graham, VRC
- Julie Ledgerwood, VRC
- Lucio Gama, VRC
- Martin Gaudinski, VRC

Editor

Richa Chaturvedi

Lab Representatives

- John Hural
- On Ho
- Vanessa Cummings

PDM

Carter Bentley

Pharmacist

Oladapo Alli

Pharmacologist

Julie Dumond

Regulatory Affairs

Meg Brandon

Statistics

- Yunda Huang
- Xue Han

HVTN 130/HPTN 089 Protocol Team Acknowledgements

Chairs

- Magdalena Sobieszczyk
- Sharon Mannheimer

PTL/CMM

- Carmen Paez
- Theresa Gamble

Statisticians

- Yunda Huang
- Brett Hanscom

Medical Officers

- Jane Baumblatt
- David Burns

Laboratory Leads

- David Montefiori
- Estelle Piwowar-Manning

CAB Members

- Ebony Gordon
- Kyle Warren

CERs

- Yi-Hao Jacki Wu
- Christie Lyn Costanza

CEU Representative

Gail Broder

Clinic Coordinators

- Brett Gray
- Jun Avelino Loquere

CRS Pharmacist

Kinara Yang

Community Program Assoc.

Jontraye Davis
Abraham Johnson

Consultative Investigator

Ken Mayer

CSS

Sophie Hasan

CTM/CRM

- India Tindale
- Bonnie Dye

Data Management

- Kris Donaty
- April Randhawa

Developer Representatives

- Lucio Gama, VRC
- Dan Barouch, BIDMC,
- Boris Juelg, BIDMC
- Kathryn Stephenson, BIDMC
- Michel Nussenzweig, Rockefeller
- Marina Caskey, Rockefeller

Editor

Richa Chaturvedi

Lab Representatives

- Jennifer Hanke
- John Hural
- Paul Richardson

PDM

Carter Bentley

Pharmacist

- Irene Rwakazina
- Kelly Parsons

Pharmacologist

Julie Dumond

RegulatoryAffairs

Laurie Rinn

Statistics

Kyle Marshall

HVTN 136/HPTN 092 Protocol Team Acknowledgements

Chairs

- Srilatha Edupuganti
- Christopher Hurt
- Kathryn Stephenson

PTL/CMM

- Carmen Paez
- Theresa Gamble

Statisticians

- Yunda Huang
- Brett Hanscom

Medical Officers

- Jane Baumblatt
- Wairimu Chege

Laboratory Leads

- David Montefiori
- Estelle Piwowar-Manning

CAB Members

- Hakeem White
- W Scott Cooley

CERs

- Noshima Darden-Tabb
- Machel Hunt

CEU Representatives

Gail Broder

Clinic Coordinators

Miriam Chicurel-Bayard

Community Program Manager

Jonathan Lucas

Consultants

- Bette Korber, Los Alamos
- Kshitij Wagh, Los Alamos

CSS

Sophie Hasan

CTM/CRM

- Carissa Karg
- Bonnie Dye

Data Management

- Kris Donaty
- April Randhawa

Developer Representatives

- Lucio Gama, VRC
- Dan Barouch, BIDMC
- Nandini Sane, DAIDS
- Jennifer Grossman, DAIDS

Editor

• Richa Chaturvedi

Lab Representatives

- Jen Hanke
- Vanessa Cummings

PDM

Ramey Fair

Pharmacist

Justine Beck

Pharmacologist

Julie Dumond

Regulatory Affairs

Laurie Rinn

Statistics

• Xue Han

Thank you to all the site investigators, clinic coordinators, CER teams, and pharmacists.

HVTN 127/HPTN 087 sites:

- Atlanta Ponce de Leon
- Birmingham
- Boston Brigham
- Boston Fenway
- Chapel Hill
- Lausanne
- New York Physicians & Surgeons

HVTN 130/HPTN 089 sites:

- Boston Fenway
- Nashville
- New York Harlem Prevention
- New York Physicians & Surgeons

HVTN 136/HPTN 092 sites:

- Atlanta Hope Clinic
- Chapel Hill
- Los Angeles Vine Street
- Philadelphia
- Rochester
- Washington DC Washington Circle